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• Electricity demand uncertainity (ramping up 
evening peak)

• PV generation variability

• Need of accurate forecasting

• Schedule optimization for energy storage (ES) 

• Better preparedness against ES duty cycle 
mismatch volatility

Could Machine Learning be useful?

Introduction
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Ramping down



Models for PV generation 
forecasting

• Seasonal ARIMA 

• ANN-Multivariate

• CNN-SRP (Super Resolution Perception)

• ANN

• LSTM

• CNN-LSTM 

Literature survey

Models for electrical demand 
forecasting

• ARMA

• RNN

• CNN-LSTM

• LSTM

• CNN+LSTM-AE

• Bi-GRU

• Bi-LSTM
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Problem Statement: 

Optimise the duty cycle of energy storage device (battery) 
through forecasted PV and load demand data (half-
hourly)

Aim: Flatten the peak demand curve 

Constraints:

Battery must charge only until 15:30 (@ max charging 
rate of 2.5MW/hh) 

Battery must discharge only during 15:30 to 21:00 (@ 
max discharging rate of 2.5MW/hh)

Case Study
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Total PV capacity: 5MW

Total battery capacity: 6MWh

Devon Substation, Plymouth, UK

Dataset source: https://www.westernpower.co.uk/innovation/pod/dataset 



Data Analysis

No 
correlationHighly 

correlated
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Data Analysis
Seasonal variation of load 
demand for 2018 & 2019 

Spring 01/03/2018 to 31/05/2018

Summer 01/06/2018 to 31/08/2018

Autumn 01/09/2018 to 30/11/2018

Winter 01/12/2018 to 28/02/2019
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Small dataset given for model training



ML Models

Models

Classical ARIMA

Neural 
Network

CNN

LSTM

RNN-HT

GRU-HT

Proposed 
Methods

Model Evaluation:

N is the number of samples;

Pinstalled is the installed capacity.

𝑃𝑖 and 𝑃𝑖 are the predicted and 

measured power at the time i;

Neural network models with Bayesian hyperparameter
optimization approach or Hyperparameter Tuning (HT) 
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Bayesian optimization for HT

Update Gaussian 
Model

Model Sampling to 
Maximize Expected 
Improvement (EI)

Create Search Space 
(Hyper-Parameters)
E.g. Learning rate, 

layers, nodes, 
activation function

Create Neural Network 
using Hyper-Parameters

Train the Neural 
Network

Performance Evaluation 
of Neural network

Accuracy check 
point on 

Validation- set

GP based Bayesian Hyper-Parameter Optimization 

Neural Network

Source: Pedersen, M.E.H.: Hyper-parameter optimization (2018). https://github.com/Hvass-Labs/TensorFlow-Tutorials
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Bayesian optimization for HT

Hyperparameters HT values 

Number of units 128, 128, 64

Number of hidden layers 2

Activation function Leaky ReLU

Max epochs 100

Batch Size Single shot batch (all data points at 
once)

Optimizer Adam 

Learning rate 0.5

Dropout rate 0.3

Advantages

• Parallel processing of all the possible 
hyperparamters combinations

• Faster than manual hit and trial selection 
approach

• Maximise the model’s predictive accuracy
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Forecast results
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ES Optimization

Baseline Model: Basic RNN Model
Best Model:
GRU-HT for PV Forecasting
RNN-HT for Demand Forecasting
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Dist. N/W PV + Battery

Load

Power Flow



ES Optimization
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Conclusion

 Bayesian optimization based HT provides more accurate forecasting results

 Best model for multivariate forecasting – GRU-HT

 Best model for univariate forecasting – RNN-HT

 Models worked well with small training dataset 

 Future schedule of storage optimization is 24% more accurate than standard 
models

 Computational time is very less and hence can be a better tool for real-time 
forecasting
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Thank You
For any queries, you can reach me at

Rohit.Trivedi@ierc.ie
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