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Introduction

° Electricity demand uncertainity (ramping up
evening peak)

° PV generation variability
° Need of accurate forecasting
° Schedule optimization for energy storage (ES)

° Better preparedness against ES duty cycle
mismatch volatility

Could Machine Learning be useful?
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Literature survey

Models for PV generation Models for electrical demand
forecasting forecasting
* Seasonal ARIMA * ARMA
* ANN-Multivariate * RNN
®* CNN-LSTM
®* CNN-SRP (Super Resolution Perception) >
°* LSTM
* ANN
* CNN+LSTM-AE
-1 °* Bi-GRU
®* CNN-LSTM

* Bi-LSTM



Case Study

Problem Statement:

Optimise the duty cycle of energy storage device (battery)
LhrOLfg)h forecasted PV and load demand data (half-
ourly

Aim: Flatten the peak demand curve
=2=| Total PV capacity: SMW

Total battery capacity: 6MWh

© |Devon Substation, Plymouth, UK

Constraints:

Battery must charge only until 15:30 (@ max charging
rate o 2.5|\/IW/hh%

Battery must discharge only during 15:30 to 21:00 (@
max discharging rate of 2.5MW/hh)
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International Energy Research

Data Analysis
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Data Analysis
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ML Models

Neural network models with Bayesian hyperparameter
optimization approach or Hyperparameter Tuning (HT)

m

Neural

Network

Model Evaluation:

RMSE = \,(%Z(E —Pi)z)

N — 2
1 E—- B
nRMSE = 100 — Z
N =1 Piﬂataiisd

N is the number of samples;

P; and P; are the predicted and
measured power at the time i;

Pinstalled is the installed capacity.
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Bayesian optimization for HT

GP based Bayesian Hyper-Parameter Optimization

best observed value

Update Gaussian Model Sampling to

Neural Network

> » Maximize Expected
Model P
_._ ;):Jseelf"\:::t:;anlues Improvement (EI)
A V3 —— GP mean
\ 4
Create Search Space
Accuracy check (Hyper-Par.ameters)
. E.g. Learning rate,
point on I des
Validation- set gye'rs, no ’
activation function
A
N v
i Performance Evaluation |, Train the Neural | Create Neural Network
! of Neural network Network using Hyper-Parameters |

Source: Pedersen, M.E.H.: Hyper-parameter optimization (2018). https://qithub.com/Hvass-Labs/TensorFlow-Tutorials



https://github.com/Hvass-Labs/TensorFlow-Tutorials
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Bayesian optimization for HT

AdVCI nfdges Hyperparameters HT values
* Parallel processing of all the possible Number of units 128,128, 64
hyperparamters combinations Number of hidden layers 2
* Faster than manual hit and trial selection Activation function Leaky RelU
approach Max epochs 100
* Maximise the model’s predictive accuracy satch Size SIngle shor batg?]ézl)l data points at
Optimizer Adam
Learning rate 0.5
Dropout rate 0.3

10



Forecast results

Error Comparison for PV Forecast ML Models

RMSE & nRMSE Errors
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Error Comparison for Demand Forecast ML Models
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ES Optimization Forecasted PV
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ES Optimization
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Battery operation
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RMSE for Battery Operation
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Conclusion

" Bayesian optimization based HT provides more accurate forecasting results
" Best model for multivariate forecasting — GRU-HT

" Best model for univariate forecasting — RNN-HT

" Models worked well with small training dataset

" Future schedule of storage optimization is 24% more accurate than standard
models

" Computational time is very less and hence can be a better tool for real-time
forecasting
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