

EUROCON 2021

Peak Demand Management and Schedule **Optimisation for Energy Storage through the** Machine Learning Approaches

> Rohit Trivedi, Shafi Khadem International Energy Research Centre, Tyndall National Institute, Cork, Ireland

European Union European Structur

Presentation outline

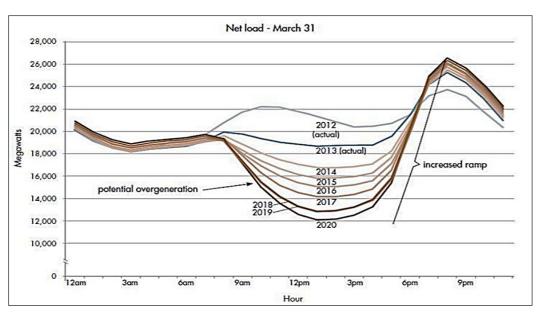
- Introduction
- Literature survey
- Case study
- Machine Learning (ML) models
- Forecast results
- ES optimization
- Conclusion
- Acknowledgement

3

Introduction

- Electricity demand uncertainity (ramping up evening peak)
- PV generation variability
- Need of accurate forecasting
- Schedule optimization for energy storage (ES)
- Better preparedness against ES duty cycle mismatch volatility

Could Machine Learning be useful?





Literature survey

Models for PV generation forecasting

- Seasonal ARIMA
- ANN-Multivariate
- CNN-SRP (Super Resolution Perception)
- ANN
- LSTM
- CNN-LSTM

Models for electrical demand forecasting

- ARMA
- RNN
- CNN-LSTM
- LSTM
- CNN+LSTM-AE
- Bi-GRU
- Bi-LSTM

Case Study

Problem Statement:

Optimise the duty cycle of energy storage device (battery) through forecasted PV and load demand data (half-hourly)

Aim: Flatten the peak demand curve

Total PV capacity: 5MW

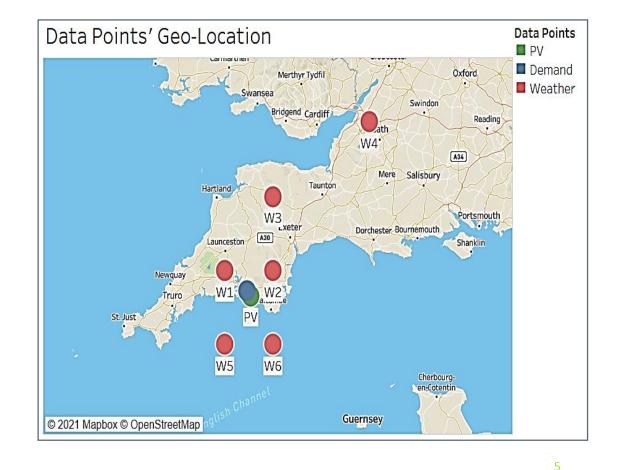
Total battery capacity: 6MWh

Devon Substation, Plymouth, UK

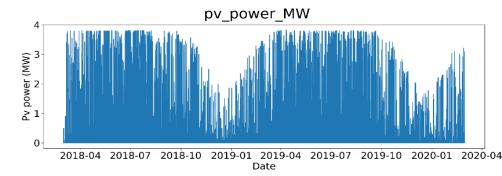
Constraints:

Battery must charge only until 15:30 (@ max charging rate of 2.5MW/hh)

Battery must discharge only during 15:30 to 21:00 (@ max discharging rate of 2.5MW/hh)



Data Analysis



Correlation Heatmap_PV

1.00

- 0.50

- 0.25

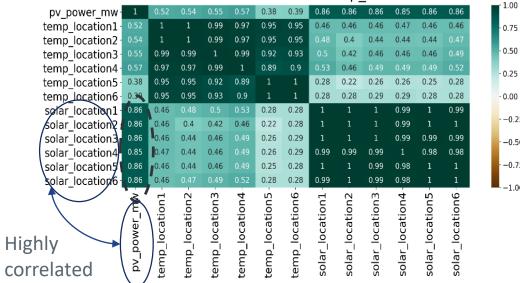
- 0.00

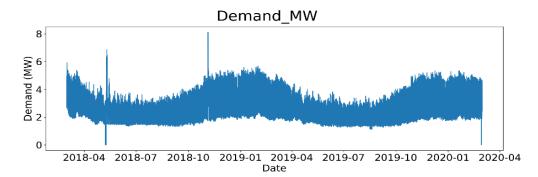
-0.25

-0.50

- -0.75

-1.00

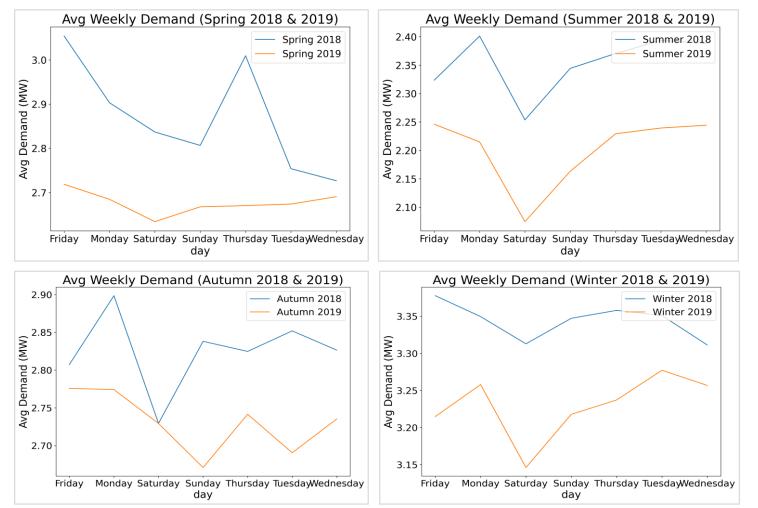




Correlation Heatmap DEMAND

								_						
demand 1	0.086	0.093	0.1	0.12	0.013	0.017	0.25	0.25	0.24	0.23	0.25	0.25	1.00	,
temp_location1 0.08		1	0.99	0.96	0.95	0.94	0.45	0.44	0.45	0.44	0.44	0.44	- 0.75	j
temp_location2 0.093	1	1	0.99	0.97	0.95	0.95	0.45	0.45	0.45	0.45	0.45	0.45		
temp_location3 0.1	0.99	0.99	1	0.98	0.92	0.92							- 0.50	1
temp_location4 - 0.12	0.96	0.97	0.98		0.89	0.89							- 0.25	ŝ
temp_location - 0.013	0.95	0.95	0.92	0.89			0.28	0.28	0.28	0.28	0.28	0.28	0.25	
temp_location ^{5 - 0.017}	0.94	0.95	0.92	0.89		1	0.27	0.27	0.28	0.28	0.27	0.27	- 0.00)
solar_location - 0.25	0.45	0.45			0.28	0.27				0.99	1	0.99		
solar_location2 - 0.25	0.44	0.45			0.28	0.27				0.99	1	1	0.2	25
solar_location 3 - 0.24	0.45	0.45		0.5	0.28	0.28	1	1	1	0.99	0.99	0.99	0.5	50
solar_location4 0.23	0.44	0.45			0.28	0.28	0.99	0.99	0.99	1	0.99	0.99		
solar_location5 0.25	0.44	0.45			0.28	0.27			0.99	0.99		1	0.7	15
solar_location6 - 0.25	0.44	0.45			0.28	0.27	0.99		0.99	0.99	1	1	1.0	20
	Ļ	5	ά	4	j2	-je	Ļ	, Z	ģ	4	ģ	ģ	1.0	10
	ē	ē	jo	jo	jo	jo	j	jo	jo	jo	jo	location6		
e e	ät	Cat	Gt	Gat	Cat	cat	ät	at	Cat	Cat	at	Cat		
No \ ^{\vee} /	temp_location1	temp_location2	temp_location3	temp_location4	temp_location5	temp_location6	solar_location1	solar_location2	solar_location3	solar_location4	solar_location5	ŏ.		
	٩	ď	٩	م'	٩	٩	۳,	<u>ل</u>	۲,	۲,	٦,	۲.		
correlation	Ъ	ъ	ъ	eμ	eμ	eμ	ijo i	ijo i	io i	io i	io i	solar		
	ũ,	Ľ,	ũ,	ũ	ů,	Ľ,	Ś	UN	N	U)	UN	^o		

Data Analysis



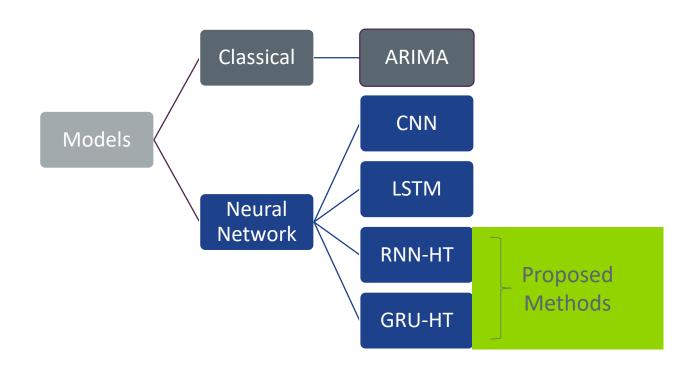
Seasonal variation of load demand for 2018 & 2019

Spring	01/03/2018 to 31/05/2018
Summer	01/06/2018 to 31/08/2018
Autumn	01/09/2018 to 30/11/2018
Winter	01/12/2018 to 28/02/2019

Small dataset given for model training

ML Models

Neural network models with Bayesian hyperparameter optimization approach or Hyperparameter Tuning (HT)



Model Evaluation:

$$RMSE = \sqrt{\left(\frac{1}{N}\sum_{i=1}^{N} \left(\widehat{P}_{i} - P_{i}\right)^{2}\right)}$$

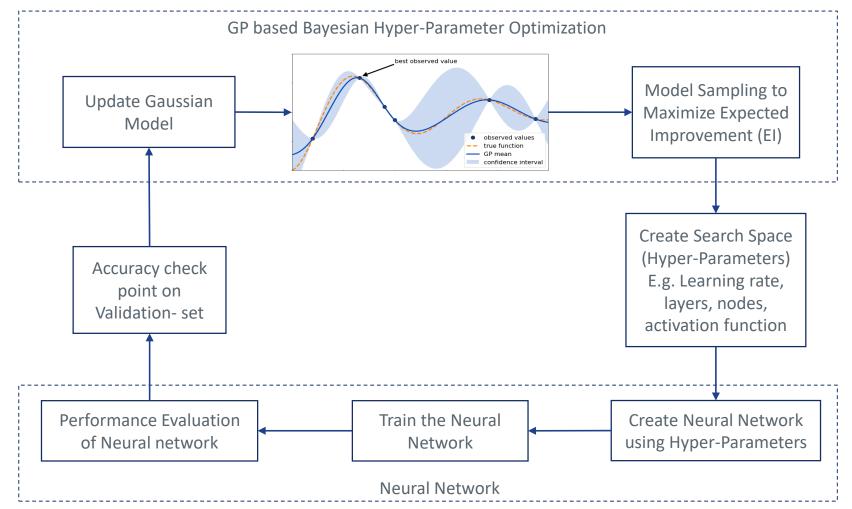
$$nRMSE = 100 \sqrt{\left(\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\widehat{P}_{i} - P_{i}}{P_{installed}}\right)^{2}\right)}$$

N is the number of samples;

 \hat{P}_i and P_i are the predicted and measured power at the time *i*;

Pinstalled is the installed capacity.

Bayesian optimization for HT



Source: Pedersen, M.E.H.: Hyper-parameter optimization (2018). <u>https://github.com/Hvass-Labs/TensorFlow-Tutorials</u>

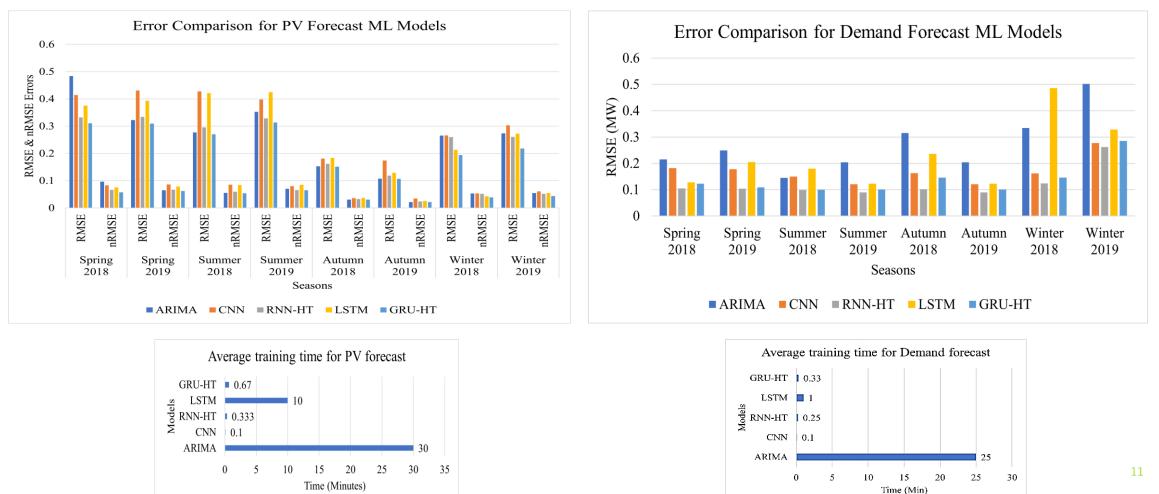
Bayesian optimization for HT

Advantages

- Parallel processing of all the possible hyperparamters combinations
- Faster than manual hit and trial selection approach
- Maximise the model's predictive accuracy

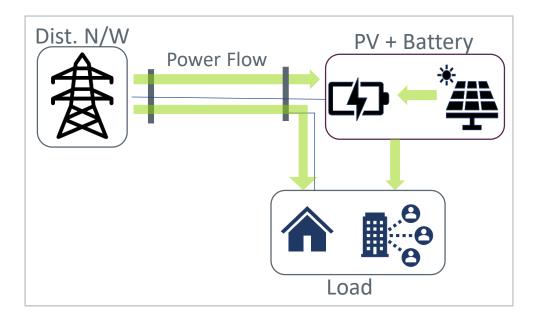
Hyperparameters	HT values				
Number of units	128, 128, 64				
Number of hidden layers	2				
Activation function	Leaky ReLU				
Max epochs	100				
Batch Size	Single shot batch (all data points at once)				
Optimizer	Adam				
Learning rate	0.5				
Dropout rate	0.3				

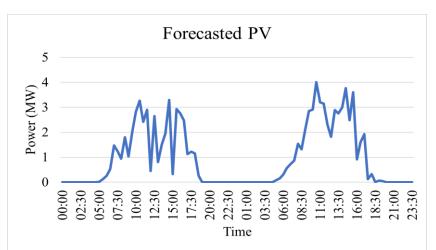
Forecast results

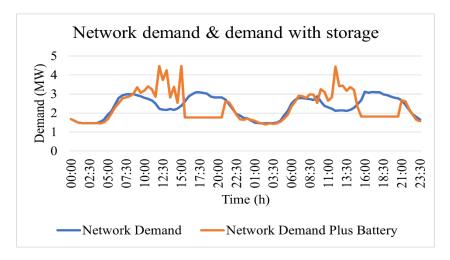


ES Optimization

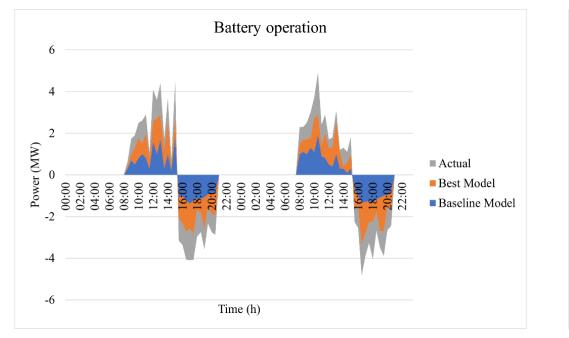
Baseline Model: Basic RNN Model Best Model: GRU-HT for PV Forecasting RNN-HT for Demand Forecasting

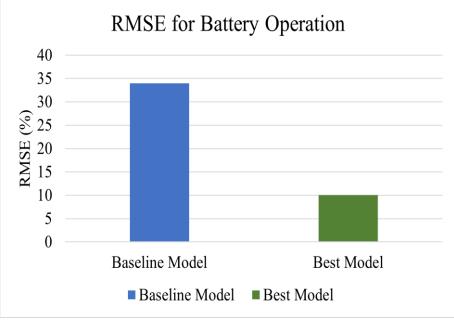






ES Optimization





Conclusion

- Bayesian optimization based HT provides more accurate forecasting results
- Best model for **multivariate** forecasting **GRU-HT**
- Best model for univariate forecasting RNN-HT
- Models worked well with small training dataset
- Future schedule of storage optimization is 24% more accurate than standard models
- Computational time is very less and hence can be a better tool for real-time forecasting

Acknowledgement

This work is a part of **MiFIC project** and the authors in **IERC** thankfully acknowledge the support from the **Department of the Environment, Climate and Communications**.

Thank You For any queries, you can reach me at Rohit Trivedi@ierc.ie

International Energy Research Centre

Lee Maltings, Dyke Parade, Cork, Ireland. T12 R5CP

t: +353 21 234 6949 e: info@ierc.ie ierc.ie

 in @ ierc-international-energy research-centre-b5448185
@IERC_info

European Union European Structural and Investment Funds