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Abstract—Towards the development and demonstration of an
innovative business model where the value proposition for con-
sumers/prosumers, aggregators and network operators are well main-
tained, this study assesses the performance of different aggregation
control strategies for a distributed energy storage based residential
virtual power plant (VPP). A special focus is given on the social
welfare and network strength and their relation to energy storage
capacity and power budgets allocation. The study is based on a real-life
demonstration project, StoreNet where the basic self-consumption (SB-
SC) control strategy has already been deployed. Analysing one-year
measured data, it is observed that the implemented SB-SC approach
allows 16%-19% electricity cost-saving, whereas the proposed VPP-bill
minimisation approach can benefit from 37%-42% cost saving. This
is also 7%-8% higher than the single home bill minimisation approach
where the community does not participate in the VPP model. In
contrast, the peak shaving approach is more favourable for the network
operator. It reduces the load peak by 46.5%-64.7% and also drastically
reduces the benefits for the customers and aggregator. Based on these
studies and learning, some recommendations are made addressing the
integration aspect of residential VPP and the future development of
this concept for the local and wholesale energy markets.

Index Terms—Virtual power plant, aggregator, energy management
system, MILP programming, StoreNet pilot project.

NOMENCLATURE
CVPP: Commercial virtual power plant
DER: Distributed energy resources
DSO: Distribution system operators
DSR: Demand-side response
EMS: Energy management system
ES: Energy storage
LL: Load levelling
MILP: Mixed Integer Linear Programming
PS: Peak shaving
PSDT: Peak shaving during the daytime
RES: Renewable energy systems
SB-SC: StoreNet basic self-consumption
SH-BM: Single house bill minimisation
TSO: Transmission system operators
TVPP: Technical virtual power plant
VPP: Virtual power plant
VPP-BM: Virtual power plant bill minimisation

I. INTRODUCTION

The roll-out of smart meters, demand response, and dynamic
pricing is driving advancement in the energy system decarbonisation
and market participation. The challenges faced by the utility
providers include facing the demands of power production, both in
monitoring and forecasting. The integration of virtual power plants
(VPP) can help alleviate any potential grid volatility by providing
a granular response to demand. A VPP may be able to help with

the intermittency of renewables, reduce consumption at times of
peak demand and provide a reserve of power [1], [2], [3].

To develop and manage the VPP, the aggregator plays the most
important role as a mediator between the consumers, who sell their
self-generated excess clean energy and demand flexibilities (modifi-
cations in consumption), and the markets where the aggregator sells
these flexibilities for use by other electricity system and market play-
ers. These activities of market participation and system management
and support for VPP are considered respectively as commercial and
technical activities. Thus the concepts appear as commercial VPP
(CVPP) and technical VPP (TVPP) [4], [5]. The functionality of
CVPP mainly includes (i) trading in the wholesale energy market,
(ii) balancing of trading portfolios and the provision of services
that are not location-specific to the system operator. On the other
hand, TVPP provides (i) local system management for distribution
system operators (DSO), (ii) system balancing and ancillary services
to transmission system operators (TSO). There can, however, be a
commercial value associated with the provision of such grid services.

The energy management system (EMS) presents the core of the
VPP concept. Its main functionality consists of ensuring an optimal
dispatch of the VPP resources while scheduling the electricity
production and consumption of different VPP resources. Indeed, it
plays a crucial role in collecting, storing, and analysing the various
forms of data from VPP resources and coordinating the control
of remote monitoring devices. Usually, a certain number of sub-
functionalities are implemented to ensure robust and coordinated
operation of the control system, such as forecasting the DER
generation and loads, power flow coordination among the different
VPP components, management of energy storage (ES) unit, flexible
load unit, etc. The EMS dispatch concept is to accomplish certain
technical and/or commercial objectives for the VPP operation, such
as reducing greenhouse emissions, maximising profit, minimising
network losses, reducing energy cost, etc. To this end, different
approaches have been developed [6]. These approaches could be
split into analytic or heuristic methods. The literature review shows
that the most adapted algorithms in the deterministic category are
mixed-integer linear programming, dynamic programming, and
nonlinear programming. Researchers usually refer to stochastic
or robust optimisation methods to count model, measurement, or
forecast uncertainties. Heuristic methods are showing an increasing
potential for EMS VPP design and especially using the genetic
algorithm and particle swarm optimisation method [7], [8], [9].

The recent development of IoT and smart meter technologies has
promoted the smart integration of residential houses into the electric-
ity system. Residential prosumers will play a key role in decarbon-
ising the electricity system and promoting demand-side response
(DSR) programs [10], [11]. The potential of residential consumers
in participating in flexibility management has been assessed via dif-
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ferent pilot projects [10], [12]. Along with the recent development of
house EMS [8], [13], the VPP concept has a pivotal role in smooth-
ing the transition towards decarbonising the building/residential
sector and maximising the social welfare of residential distributed
energy resources (DER) [1], [14]. In [7], the authors have proposed
a coordination control approach to reducing the electricity bills
of smart houses in a neighbourhood. They have also analysed the
impact of control on the average peak reduction. The authors in [14]
have proposed a day ahead control algorithm for residential VPP
and investigated the economic impact of ES and distributed PV on
the residential aggregator. An optimal approach for maximising the
residential VPP income via participating in the energy and local flex-
ibility markets has been investigated in [3]. In [15], the authors pro-
posed a demand response algorithm for residential aggregated load
peak shaving. The described case study showed that the proposed
approach reduces the aggregated load by 33% during peak hours.

The integration of ES potentially enhances VPP market uptake
and grid integration scalability and sustainability. Indeed, ES can
reduce the investment needed in upgrading the network to be
able to cope with the significant peaks and troughs in the flow
of electricity [2], [3], [16]. As well as benefits to the network,
the successful development of commercial ES can accelerate the
shift to a low carbon economy [17]. Moreover, in VPP, the ES
solution can help the owners of renewable energy systems (RES)
capture the value of flexibility [18], increase the value of assets
through the markets, reduce the financial risk through aggregation,
and improve the ability to negotiate commercial conditions. The
benefits for network operators (TSO and DSO) includes increased
visibility of RES units for consideration in network operation,
control flexibility of RES units for network management, improved
use of grid investments, improved coordination between DSO and
TSO, mitigate the complexity of operation (caused by the growth
of inflexible distributed generations) [19], [20]. The suppliers and
aggregators have many advantages, such as new offerings for
consumers/prosumers and DERs (such as EV, ES, microgeneration
systems, flexible loads, HP etc.) suppliers, mitigating commercial
risk, and proposing/extending new business opportunities [21].

A. Motivation

Few VPP projects were developed worldwide to assess the techno-
economic viability of this novel VPP concept in a real case. Indeed in
the US, ConEdison VPP manages ES and PV installed in residential
houses. The Australian SA VPP project presents a good learning
VPP paradigm. More information about these projects and previous
ones could be found in [22]. This ongoing effort enabled building
a better understanding of the VPP and the concept they are created
for and encouraged financial and funding institutions to participate
in the VPP future. However, there is still a lot of learning to bring
this technology as a mature product to the market. For instance,
there is less understanding among decision-makers and stakeholders
about the best relationship framework to establish between the
aggregator and the network operator and utility suppliers. Usually,
if the aggregator belongs to the utility, then the objectives of the
aggregator will stand at the utility side to maximise the benefits
of the utility. On the other hand, if the aggregators are a third-part
profit entities, they will generally be scanning for maximising their
profit. But, how about maximising the benefit of the customers

or society? What objectives can be considered, and how can the
control policies impact this? Many other research questions are
still required to answer as: What kind of control strategy can be
adapted for residential VPP? What are the impacts of the aggregator
control approach on VPP and network operation? What is the
impact of the popularisation of residential VPP on the future
operation of the electric network? How can the ES sizing affect
the aggregator control strategy and its economic benefits? However,
a very important question arises again here - How sensitive is the
control approach to the stable and economic operation of VPP? In
practice, it means will it be beneficial if the number of VPP houses
increases, or/and an allocation of part of the ESs power and capacity
budget to provide other services to the community or the grid?

B. Paper contribution

Motivated by the above, the StoreNet pilot project contributes
to the VPP state of the art, demonstrates the viability of a VPP as an
aggregation platform of distributed resources for the stakeholders’
benefits, and analyses potential policy and actions to support
efficient VPP deployment in the energy transition. This paper uses
the StoreNet pilot project facilities, data, and outputs to address
some research gaps related to VPP control strategy performances
and their impact on VPP performances. The key contributions of
this paper to current to state of the art are summarised as follows

• Five different control strategies for aggregators operating
the StoreNet demo side are proposed, and the impact of
each control approach on the VPP and network operation is
assessed through a daily and monthly analysis; these strategies
are not new, but their implementation through residential VPP
control is new and did not practiced/implemented yet,

• The impact of ES sizing on the aggregator control strategy
and its economic benefits is studied, along with the interaction
aspect with a day-night tariff scheme and the impact due to the
consumption pattern. This will give the aggregator a better idea
of improving the VPP management and operation. Moreover,
it will provide a framework for the DSO, utility supplier, and
market operator (aggregator) to develop an appropriate remu-
neration scheme that will shape the future of the local energy
market and its contribution to grid stability, thus demonstrating
the way to easing DERs integration and grid decarbonisation,

• Based on the performed analysis in this paper, some recommen-
dations are proposed addressing the integration and the future
development of residential VPP in the local and wholesale
energy markets.Initially, a VPP bill minimisation (VPP-BM)
control strategy is proposed. The main aim here is to optimise
the load and resources management to maximise economic
benefits for consumers at the community level. A zero feed-in
tariff is considered here to align with the Irish policy. Hence,
the algorithm considers here the VPP as a central controller to
exchange energy between different houses but does not benefit
from any feed-in tariff scheme. The impact of the aggregation
concept is investigated through the design of a single house
bill minimisation (SH-BM) approach. This algorithm offers
similar functionality to VPP-BM; however, it focuses on
self-optimisation for each house rather than considering it as a
community. From a network point of view, peak shaving (PS)
and load levelling (LL) algorithms have been designed. The
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latter strategies (PS and LL) are more beneficial for the system
operator. The main aim is to study the impact of providing
such a service to the grid operator on the revenue stream and
mainly the electricity bill. A peak shaving during the daytime
(PSDT) algorithm is also assessed. This strategy is developed
to concretise the grid operator requirement of minimising
the peak during the daytime to enhance network flexibility.
The total consumption is usually very high in peak times and
can trigger some power quality issues. The performances of
each algorithm mentioned above are described and compared
with the StoreNet basic self-consumption (SB-SC) algorithm
developed and applied by the aggregator for the initial
operation design of the StoreNet platform.

Moreover, we assess the impact of ES power and capacity budget
on the economic viability of the different control strategies. This
is to investigate the ES deployment by each control strategy and
a potential role of the VPP in providing other energy and flexibility
services, as secondary ones, in the market, and generate accordingly
additional benefits for customers.

The rest of this paper is organised as follows; in sections II,
the design methodology of the algorithms is described, a Mixed
Integer Linear Programming (MILP) formulation is considered.
Section III presents case studies for different scenarios; a sensitivity
analysis is also assessed to investigate the revenue stream from the
ES capacity and power budget allocation. Moreover, an analysis of
the implemented and proposed algorithms is described showing the
impact of each approach and the adopted day-night tariff scheme
on the saving and consumption pattern. In section IV, key findings
and recommendations, based on this study and StoreNet learnings,
are given that address the future development of VPP in the local
and whole energy markets. Finally, section V concludes this paper.

II. STORENET VPP CONTROL

"StoreNet" is an industry-led, collaborative project of the Interna-
tional Energy Research Centre with Solo Energy (aggregator), Elec-
tric Ireland (utility supplier), and ESB Networks (network operator).

The StoreNet VPP demonstration is located in the Dingle
peninsula in the southwest of Ireland and is controlled by the
aggregator in Cork. Twenty (20) houses host each a 10kWh/3.3kW
peak Sonnen lithium-ion battery ES. Nine (9) of those houses also
have installed rooftop 2.4kW PV panels, and all of the houses are
on smart meters with a day/nighttime tariff scheme. Fig. 1 shows
the StoreNet demonstration site, the location of the participating
houses and a system installation example. In the StoreNet concept,
the VPP is designed to create value for both the VPP operator and
the participants in the scheme – usually through sharing of the
financial benefits that the VPP creates. The VPP participant will
receive the electricity bill from the VPP operator rather than the
electricity supplier in this case. The VPP billing will consider the
contribution of the house to the total saving.

The StoreNet control architecture consists of a central controller
that specifies the power exchange between the ESs, the houses,
the PV generators, and the grid. The customer locations are noted
by the red dots. The overall VPP cloud control architecture is also
presented in Fig. 2.

The SB-SC algorithm has been developed by Solo Energy
(aggregator) to control the battery ES. According to the ES existing

Fig. 1. StoreNet VPP Demonstration site and Network

Fig. 2. VPP Control architecture

control method, the implemented algorithm aims at maximising
the PV generation self-consumption at the household level. It
uses a day ahead control approach using a forecast of generation
and consumption (Fig.3). Further details of the algorithm and ES
functionalities are described in [23]. The authors, in this case, have
full access to onsite outputs but not the algorithm script to replicate
the system for offline analysis.

Fig. 3. Screenshot of Sonnen Dashboard

In the remainder of this section, five different control approaches
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for StoreNet VPP aggregator are described. A day ahead control
approach is considered. It computes the charging and discharging
battery ES reference signals based on the day ahead generation and
consumption forecast (Fig. 4). A Mixed Integer Linear Programming
(MILP) algorithm is used to design the reference signal for the power
conversion system to ensure optimal system management to fulfil
specified criteria or a so-called objective function. The algorithm
considers the characteristics of the system components in each house
and the design objective to synthesise the optimal control scenario.
The MILP constraints and objective funtions are described as follows

Fig. 4. StoreNet Control Layout

A. StoreNet VPP control - General constraints

1) PV constraints: For the rest of this study, the upper cases ∼

and − are used to denote the AC and DC signals, respectively.
First, let’s define P−

PVGeni,k as the maximum DC output power
of ith PV generator (PVGi) at a specified time interval k as:

P−
PVGeni,k=P−

PV i,k+PF−
PV i,k,∀i,k (1)

P−
PV i,k denotes the amount of power used by the VPP for its

operation and should satisfy the constraint (2).

P−
PV i,k≤P−

PVGeni,k,∀i,k (2)

PF−
PV i,k is the additional amount of power that will not be used by the

VPP controller. According to the DSO and service provider feeding
strategies, this amount of power could be curtailed or injected
into the grid. Since there is no feed-in tariff in Ireland, a power
curtailment strategy is considered in this case.

According to the VPP operation, P−
PV i,k could be split into three

parts as described in (3). The first part P∼
PV i/Hi,k will feed the load

of the house (Housei) The second part P∼
PV i/G,k will be injected

into the grid and transferred to other VPP loads. However, the last
part P−

PV i/Bi,k will be used to charge the local battery i (Bati).

P−
PV i,k=

1
η∼
PV i

P∼
PV i/Hi,k+

1
η∼
PV i

P∼
PV i/G,k+

1
η−
PV i

P−
PV i/Bi,k, ∀i,k

(3)

η∼PV i is the conversion efficiency index of the ith DC/AC inverter
installed in Housei and ensuring the power conditioning between
the PV and the House. The same efficiency index is considered
here to count the power losses of the DC/AC inverter. And η−PV i

denotes the efficiency index of the DC/DC conversion system.

2) Battery ES constraints: The ith battery charging and
discharging powers (respectively PC−

Bi,k and PD−
Bi,k) can be described

by (4) and (5):

PC−
Bi,k=ηC∼

Bi P
∼
G/Bi,k+P−

PV i/Bi,k,∀i,k (4)

PD−
Bi =

1

ηD∼
Bi

P∼
Bi/G,k+

1

ηD∼
Bi

P∼
Bi/H,k,∀i,k (5)

P∼
G/Bi,k is the Bati AC charging power from the grid. P∼

Bi/G,k,
and P∼

Bi/H,k respectively are the AC discharging power outputs of
Bati that is injected into the grid and Housei. ηC∼

Bi and ηD∼
B are

respectively the charging and discharging efficiency of the battery
bidirectional AC/DC inverter.

Due to the technical specifications of the battery and in order
to minimise the losses of the power conversion system, PC−

Bi,k and
PD−
Bi,k should be bounded by specific values as [17], [9]:

χC
i,kP

C−
Bi <PC−

Bi,k<χC
i,kP

C−
Bi ,∀i,k (6)

χD
i P

D−
B <PD−

Bi,k<χD
i P

D−
Bi ,∀i,k (7)

PC−
Bi and PD−

B (respectively PC−
Bi and PD−

Bi ) represent the
minimum (respectively maximum) charging and discharging DC
power. χC

i,k and χD
i,k are binary variables that describe respectively

the charging and discharging status of Bati. In order to avoid
the simultaneous charging and discharging operating modes, the
following constraint should be satisfied:

χC
i +χD

i ≤1,∀i,k (8)

It should be noticed that the battery can charge/discharge a limited
amount of energy, and the available stored energy, at specified time
interval k, is determined by the state of the charge of the battery as:

SoCi,k=SoCi,0+
k∑

t=0

(
PC−
Bi,k−PD−

Bi,k−PSD
Bi

)
∆k (9)

where ∆k is the sampling period. The terms SoCi,0 and PSD
Bi

denote respectively the initial SoC and the self discharge power of
the Bati

Usually, the SoC of an ES can vary from 0% to 100%; however,
in order to maintain a good operating condition of the battery and
preserve its capacity lifetime, the SoC should be maintained within
a certain range [24]. Thus, the constraint (10) is introduced:

SoCi<SoCi,k<SoCi,∀i,k (10)

where SoCi and SoCi denote the upper and the lower bounds of
Bati.
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3) VPP and load constraints: According to the VPP operation,
the load demand of ith house (P∼

Li,k) will be supplied by the grid,
the local PV generator(PVGi), and the local battery Bati as:

P∼
Li,k=P∼

G/Hi,k+P∼
PV i/Hi,k+P∼

Bi/Hi,k,∀i,k (11)

It is to be noticed that P∼
G/Hi,k ≥ 0 and PF−

PV i,k (in 1) is non
remunerated, hence 12 holds:

P∼
PV i/Hi,k+P∼

Bi/Hi,k≤P∼
Li,k,∀i,k (12)

Then, the total load of the VPP, at a time k, P∼
V PP,k can be defined

as:

P∼
V PP,k=

nH∑
i=1

P∼
Li,k+P∼

G/Bi,k−P∼
PV i/Hi,k−

P∼
Bi/Hi,k−(1−ξ)P∼

Bi/G,k−(1−ξ)P∼
PV i/G,k,∀i,k

(13)

where nH is the number of houses in the VPP. ξ presents the grid
losses coefficient. This term is introduced to count the energy losses
due to the energy transfer within the participating houses under the
VPP operation.

Since there is no grid feed-in tariff, no power will be injected
into the grid, or there will be curtailment for the overall excess
self-generation power; hence we assume that P∼

V PP,k will be
positive for all time. Then the constraint (14) should be accounted.

P∼
V PP,k≥0,∀k (14)

In order to ensure a smooth transition between the two consecutive
decision horizons and the new control sequence, the final Bati
SoC value for decision horizon h (SoCi,hkT

), is imposed when
computing the optimisation algorithm (as described in 15). In this
study, this value is considered to be equal for each decision horizon
(SoCi,HkT

), to be used as an initial SoC value to design the control
sequence of the next decision horizon.

SoCi,kT
=SoCi,hkT

=SoCi,HkT
(15)

B. StoreNet VPP control - Objective function

The objective functions of the EMS algorithms depend on the
stakeholders’ requirements/benefits; customer, VPP aggregator, util-
ity supplier, and the network operator. These will offer the aggregator
the flexibility to deal with different scenarios and to compare their
technical-economic impacts on the network and the end-users.

1) Single house bill minimisation (SH-BM): The controller
considers each house as a single entity. The role of the aggregator is
then to design a battery charge-discharge controller that maximises
the economic benefits of each house independently. The benefits
are generated by purchasing energy from the grid to charge the
battery at nighttime or excess PV energy when available and then
using it during the daytime to feed the load. The DERs, in this
case, are not optimally deployed in favour of the community since
they are controlled as a separate unit to maximise the individual
profits without being able to share these resources with the other
VPP customers. The objective function used to design the ith house
battery charge-discharge controller (JSH−BMi) is described as:

JSH−BMi=min
kT∑
k=0

Ψk

(
P∼
Li,k+P∼

G/Bi,k−P∼
Bi/Hi,k

)
i=1···nH

(16)
where kT is the horizon decision interval and Ψk is the electricity

price of a time interval k.
2) VPP bill minimisation (VPP-BM): The control algorithm,

in this case, optimises the DERs in favour of all the VPP
customers. It enables sharing of DERs among customers and
creates a cooperative energy exchange framework between the
households in the community. The main aim of this VPP is to
generate the maximum benefits from the use of batteries and PV
generators through the minimisation of the total electricity bills
from aggregating the loads, the PV generation, and the batteries
use of the different houses [25]. This objective can be guaranteed
through the minimisation of the following objective function:

JV PP−BM =min
nH∑
i=1

kT∑
k=0

Ψk

(
P∼
Li,k+P∼

G/Bi,k−

P∼
PV i/Hi,k−P∼

Bi/Hi,k−(1−ξ)P∼
Bi/G,k−(1−ξ)P∼

PV i/G,k

)
(17)

3) Peak shaving (PS): Peak Shaving is one of the potential VPP
applications in the smart grid network [15], [26]. It aims at reducing
the peak demand to avoid the installation/operation of additional
generation, distribution, and transmission capacities to secure the
supply during the peak period. Usually, this peak can appear either
in the early morning or early evening time. This offers a good
feature for the TSO/DSO to control their network and minimise the
future grid support investment. However, this may impact the direct
economic benefits of end-users. Then a compensation scheme for
using this feature should be placed. The mathematical formulation
of the peak shaving objective function can be described by (19) as

JPS=min
(
P∼
V PP,max

)
(18)

where P∼
V PP,max is the maximum aggregated load such that:

P∼
V PP,max>P∼

V PP,k∀,k (19)

Note that this service can be considered by the DSO only for an
aggregated load since a single house peak shaving will not get the
same impact as an aggregator can do.

4) Peak shaving during daytime (PSDT): PSDT is another
control approach that combines peak shaving and a kind of energy
bill minimisation. This will especially be applicable where the
day-night tariff system exists, such as in Ireland. Usually, the
daytime electricity tariff is much higher than that of the nighttime.
A peak demand appears in the daytime (mostly in the late afternoon
and early evening time), making the DSO feel concerned about
the ability of their facilities to respond to the peak demand. This
approach is different from PS since minimising the peak during the
nighttime (early morning) is not considered here in the VPP control.
Also, using this approach will lead to less energy demand from
the grid in the daytime, and more energy demand will be shifted
to the nighttime, mainly for charging the ES during the nighttime
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low grid tariff. While considering the ToU tariff characteristics, thus
shifting the demand to the nighttime will reduce the electricity bill.
The objective function is described by:

JPSDT =min(DPV PP,max) (20)

where:

DPV PP,max>DPV PP,k∀,k (21)

and

DPV PP,k=
NH∑
i=1

Υk

(
P∼
Li,k+P∼

G/Bi,k−P∼
PV i/Hi,k−

P∼
Bi/Hi,k−(1−ξ)P∼

Bi/G,k−(1−ξ)P∼
PV i/G,k

) (22)

Υk is a daytime interval index.
5) Load levelling (LL): The load levelling approach aims at re-

ducing the fluctuation in electricity demand by minimising the gaps
between the on-peak and the off-peak values [26]. The aggregator
may use the batteries to store the electricity excess during low de-
mand and use it during the high demand period so that the imported
electricity from the grid maintains nearly a constant level throughout
the day-night period. This approach presents many advantages for
TSO/DSO and system operators to manage the upstream generation
and the electric network. The objective function is given by (23) as

JLL=min
(
P∼
V PP,max−P∼

V PP,min

)
(23)

where P∼
V PP,max is described by (19) and P∼

V PP,min is the
minimum aggregated load such that:

P∼
V PP,min<P∼

V PP,k∀,k (24)

III. CASE STUDIES

This section presents three groups of case studies. The first group
considers the nominal case where the full capacity of the storage
units are utilised (20 batteries), and the performances are evaluated
based on the daily profile. The second group presents a comparative
analysis of the different control approaches in terms of savings
(compared to the initial load demand base case with no PV and
ES contribution at the consumer-end) and peak consumption on a
monthly basis. The third group shows sensitivity analysis of the VPP-
BM total saving for battery capacity and power allocation and investi-
gates the system performances while considering 20% - 100% of the
total energy and power capacities of the batteries. The day-time in
this study is 10 am – 10 pm. The electricity tariffs are proposed based
on the Irish electricity market for 2019 (9.1 cents/kWh for nighttime
and 19.4 cents/kWh for daytime) [27], [28]. Other design parameters
are given in the Appendix. The aggregator control dashboard pro-
vides forecasted and real measured data of each house’s load and PV
generation. Moreover, the real measurement of the batteries charging
and discharging control signal is available for the implemented SB-
SC algorithm. Thus, for the sake of comparison, we use the real data
in spite of the forecasted one to compute the proposed algorithms
and compare the obtained results with the SB-SC outputs.

A. Full capacity storage utilisation – daily analysis

This case study presents detailed results of the SH-BM, VPP-BM,
PS, PSDT, and LL algorithms considering 30 min (sampling period)
time-series data for a day.

Fig. 5 presents different EMS outputs. The load (blue lines)
represents the real-life measured data combined for 20 customers.
The obtained results show that compared to the single house
optimisation (SH-BM, Fig. 5a), the combined/VPP optimisation
(VPP-BM, Fig. 5b) allows 9.42% more return on a typical day. This
preliminary result shows the advantage of aggregating DERs to
generate higher revenue. Moreover, it can be observed that in term
of saving, the VPP-BM and PSDT offer a close performance; the
PSDT also offers more peak reduction than that of the VPP-BM
(grid - red lines). It is also observed that the saving from the StoreNet
SB-SC is even less (23.72%) than that of SH-BM (36.41%), VPP-
BM (45.83%), and PSDT (43.63%). The analysis of the results also
shows that there is a huge difference in savings between PS (15,3%)
and PSDT (43.63%). This can be explained by the fact that while
using PS, there is less room for the battery to charge energy from the
grid at nighttime and discharge in the daytime when the electricity
price is high. However, for PSDT, there are less constraints for the
battery to be fully charged before the daytime begins and then use
this energy to minimise the peak and the load at the time.

The PS and LL algorithms exhibit almost the same peak
reduction (grid). Moreover, both present similar savings that are
close to 15%. The differences between these PS and LL can
be obtained more clearly in the case of monthly performance.
Hence, deeper analysis has also been performed to get insights
into the overall performances considering the seasonal and monthly
scenarios. Thus, the second group of case studies is presented in
the next section. It includes extensive simulations of the different
proposed control strategies implementing 1 year of real measured
data where SB-SC outcomes are from the real-life performance.

B. Savings and peak consumption study – monthly analysis

This section presents comparative studies on the performance
of the newly proposed and developed EMS algorithms and the
applied SB-SC algorithm. The performance is evaluated in terms
of monthly electricity cost savings and the peak consumption in
VPP aggregation mode. Simulations were carried out using 1h
sampling period for the 1st and the 2nd then 15th and 16th of each
month. Real data gathered from July 2019 to June 2020 were used.
Afterwards, the mean value is computed and presented. The decision
horizon is 24h. Noting that the reduced sampling time for the daily
analysis is proposed to give more insights into the dynamics of the
control, as described in Figure 5. However, the monthly analysis
is more static, and hence to reduce the computation burden and
complexity, the 1h sampling time is proposed for this study.

Fig. 6a shows the possible monthly savings if the proposed
algorithms are implemented and the existing day-night tariff scheme
is considered. It is clearly observed that the VPP-BM can be the best
approach in terms of savings. PSDT is in the second rank, followed
by SH-BM, and SB-SC is in the fourth rank. The LL here offers a
minor saving ratio and can even lead to close to zero and negative val-
ues for some periods (July – Dec). To assess the impact of different
control algorithms on the consumption waveform, the peak values
are plotted in Fig. 6b. It shows that SB-SC and SH-BM exhibit



7

(a) SH-BM (b) VPP-BM

(c) PS (d) PSDT

(e) LL (f) SB-SC

Fig. 5. Different EMS output for a typical day (100% capacity utilisation)

the highest peak value (despite neither of the algorithms showing a
considerably best saving ratio).VPP-BM and PSDT show almost the
third and the fourth-highest peaks. The PS is the best approach here
in terms of reducing the peak, followed by the LL showing almost
similar peak values, but the savings are comparatively very low.

C. Sensitivity analysis

In this group of case studies, a sensitivity analysis is performed
to investigate the impact of batteries power and capacity budget on
the economic viability of the VPP. As the initial objective of the
StoreNet VPP is to reduce the VPP community bills and previous
analysis also show that VPP-BM or PSDT strategy can be the best
choices, this analysis is extended further to study how the battery
power and capacity variation can impact other control performances
and compare this with the VPP-BM algorithm outputs. The
extensive simulations have been performed using 30 min time series
data while considering the same simulation conditions as it is done
in the previous case studies.

The main results are plotted in Fig. 7. It can be observed that
the capacity budget has more impact on the savings rather than the

increasing power ratio. For a fixed power ratio between 0.2 and 1, the
economic saving is linearly dependent on the capacity budget. The
maximum saving can be achieved at around 0.7 - 0.8 capacity ratio
and a power ratio of 0.2 - 0.3 (20% - 30% of the nominal power).
The maximum saving value here is around 46% (as described in
the first case study, Fig. 5b), and it is higher than the mean value of
the year as shown in Fig. 5a (in the second case study). The saving
value is due to batteries usage. It can be concluded that the batteries
utilisation factor, in this case, is very low. This can impact the
profitability of the battery investment. Further development on the
utilisation of the batteries’ budgets should be considered. Indeed, in
this case, at least 70%-80% of the total power budget and 20%-30%
of the total capacity budget can be used to perform other VPP
services without impacting the VPP-BM economic performances.

To give more insight into the impact of batteries power and
capacity budget variation on the other control strategies, simulations
have been performed considering 20% of the battery capacity
and power, respectively. Table I shows the main outputs while
considering the five different proposed algorithms. The obtained
results show that VPP-BM, in this case, is an energy-oriented
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Fig. 6. Saving vs peak consumption analysis

Fig. 7. EA Saving for different capacity and power ratios

application. The saving shows high volatility when reducing the
capacity budget (26.5% saving, for 20% capacity) compared to
allocating less power budget (43.4% saving, for 20% power). The
SH-BM and PSDT exhibit similar high sensitivity to capacity
budget; however, both algorithms are too sensitive also to power
budget allocation compared to VPP-BM. The saving ratios of
applying PS and LL algorithms have almost the same values. This
can be justified by the aggregated storage units’ large capacity and
power budgets compared to the total aggregated load.

IV. KEY FINDINGS AND RECOMMENDATIONS

In response to the research questions, as outlined in the
motivation section (1.1), the main takeaways from these case studies

TABLE I
BILL SAVING FOR DIFFERENT BATTERIES CAPACITY AND POWER RATIOS

SH-
BM
(%)

VPP-
BM
(%)

PS
(%)

PSDT
(%)

LL
(%)

SB-
SC
(%)

20% Power 26.76 43.42 15.3̇0 24.17 15.25 --
20% Capacity 16.18 26.4̇5 15.33 18.04 14.86 --

Nominal 36.41 45.85 15.30 43.63 15.39 23.72
Annual Average 31.89 39.358 13.16 36.90 0.54 17.59

are as follows:

1) Among all these control strategies, VPP-BM will bring
the maximum economic benefits for consumers and the
aggregator.

2) Compared to the non aggregated control strategy (SH-BM),
the VPP aggregation concept in VPP-BM and PSDT can
help to reduce the peak. For the above control approaches, the
aggregated peaks are still much higher than the original peak.
These strategies dramatically can shift the peak load from
daytime to nighttime, which may harm the grid operation.

3) The LL and PS strategies can contribute to peak shaving and
thus very much grid supportive, but may not be the good
solutions for the consumers and aggregator.

4) Optimal sizing of the aggregated storage is also crucial to
maximise the benefits. All strategies can be implemented at
different capacity and power budgets, which will bring some
economic benefits, but the VPP-BM shows more stability
in economic performance and also can be securely extended
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for multi-service provision in future. New control strategies
can be developed in future.

5) Results show that VPP-BM can be the best economic choice
for the consumers and aggregators, but in the long run, with
the presence of high number storage and capacity, the network
daily profile could be changed with nighttime or multiple
peaks. This will hedge the grid from some kind of cobra
phenomenon [29] relating to the fast development of VPP
aggregation and the quick transition of the local and wholesale
energy market. Both the regulator authority and policymakers
need to carefully consider these findings for future market
development. Further work deserves the development of
improved control strategies to maintain the benefits of
consumers, aggregators and network operators in one frame.
A new business model should also be adopted for this.

To alleviate the gap between the technical and economic benefits of
the above-mentioned algorithms, another possible solution can be to
develop a novel consumption tariff scheme to enhance the synergy
between local energy market development and grid support. Indeed,
to engage prosumers more in the future local electricity market, an
attractive consumption tariff is to be applied to justify the initial
prosumers’ investment. However, the scheme can also include a kind
of awards or penalties based on network requirement compliances.

V. CONCLUSION

Five different control approaches for a residential VPP platform
integrating rooftop PV and battery ES have been analysed in this
paper. The controller has been synthesised through the resolution
of the MILP problem formulation for a horizon decision interval
that considers PV generation and load demand forecast.

Extensive simulation studies have been carried out using the time
series real measured data from a real-life demonstration project.
Moreover, a sensitivity analysis has also been presented to assess
the impact of reducing the battery power and capacity budgets on
the control outputs and economic returns. The Irish day-night tariff
scheme is used to evaluate the techno-economic impact of each
algorithm, and a zero feed-in tariff is considered in compliance with
the Irish regulation for residential PV systems.

The sensitivity analysis has also shown that the capacity of
batteries mainly drives VPP-BM economic saving. An optimal
financial incentive can be gained while considering only a small
portion of the power budget. This will give a potential asset to
the VPP to participate in other applications, mainly the power one,
and create an additional revenue stream to support their business
model. In this case, ancillary services markets to reserve markets
can be attractive options. A design of a sophisticated optimisation
algorithm will play a key role here, and the aggregator needs to
develop good flexibility to operate in both local and wholesale
energy markets and coordinate its operation in both markets.

APPENDIX

Simulation Parameters: η∼PV i = 0.95, η−PV i = 0.95,
ηC∼
Bi = 0.95, ηD∼

B = 0.95, PC−
Bi = 0kW , PD−

B = 0kW ,

PC−
Bi = 3.3kW , PD−

Bi = 3.3kW , SoCi,0 = 10% , SoCi = 10%,
ξ=7%/day, SoCi,HkT

=10%, SoCi=90%
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